Respuesta :

Answer:

m∠ADC = 132°

Step-by-step explanation:

Use sine rule to find m<ADB

[tex] \frac{b}{sin(B)} = \frac{d}{sin(D)} [/tex]

b = AD = 35

B = m∠ABD = 120º

d = AB = 30

D = m∠ADB = ?

Plug in the values

[tex] \frac{35}{sin(120)} = \frac{30}{sin(D)} [/tex]

[tex] \frac{35}{sin(120)} = \frac{30}{sin(D)} [/tex]

Cross multiply

[tex] 35 \times sin(D) = 30 \times sin(120) [/tex]

Divide both sides by 35

[tex] \frac{35 \times sin(D)}{35} = \frac{30 \times sin(120)}{35} [/tex]

[tex] sin(D) = \frac{30 \times sin(120)}{35} [/tex]

[tex] sin(D) = 0.7423 [/tex]

[tex] D = sin^{-1}(0.7423) [/tex]

[tex] D = 48 [/tex] (nearest integer)

D = m∠ADB = 48°

m∠ADC = 180 - m∠ADB (angles on a straight line)

m∠ADC = 180 - 48° (substitution)

m∠ADC = 132°

Answer:

m∠ADC =  132

Step-by-step explanation: