Respuesta :
Answer:
a. [tex]f(a) = -0.03a +1.53[/tex]
b. See Explanation
c. The slope is reasonable but the p intercept is not
d. [tex]f(20) = 93\%[/tex] [tex]f(30) = 63\%[/tex] [tex]f(40) = 33\%[/tex] [tex]f(50) = 3\%[/tex]
Step-by-step explanation:
Given
[tex]a = age[/tex]
[tex]p = probability\ of\ marriage[/tex]
[tex]a = 45[/tex] when [tex]p = 18\%[/tex]
[tex]a = 25[/tex] when [tex]p = 78\%[/tex]
Solving (a): The linear function
We start by calculating the slope, m
[tex]m = \frac{p_2 - p_1}{a_2 - a_1}[/tex]
[tex]m = \frac{78\% - 18\%}{25- 45}[/tex]
[tex]m = \frac{60\%}{-20}[/tex]
[tex]m = -3\%[/tex]
[tex]m = -0.03[/tex]
The function is then calculated as follows
[tex]p - p_1 = m(a - a_1)[/tex]
This gives:
[tex]p - 18\% = -0.03(a - 45)[/tex]
[tex]p - 0.18 = -0.03(a - 45)[/tex]
[tex]p - 0.18 = -0.03a +1.35[/tex]
Solve for p
[tex]p= -0.03a +1.35+0.18[/tex]
[tex]p= -0.03a +1.53[/tex]
Hence,
[tex]f(a) = -0.03a +1.53[/tex]
Solving (b): Interpret the slope and the p intercept
The slope is calculated as:
[tex]m = -0.03[/tex]
And it implies that, there is a 3% reduction in change of getting older as women get older
The p intercept implies that, there is a 1.53 chance for 0 years old female child to get married.
Solving (c): Is (b) reasonable
The slope is reasonable.
However, the p intercept is not because of the age of the woman
Solving (d): Determine f(20), f(30), f(40), f(50)
We have that:
[tex]f(a) = -0.03a +1.53[/tex]
[tex]f(20) = -0.03 * 20 + 1.53[/tex]
[tex]f(20) = -0.6 + 1.53[/tex]
[tex]f(20) = 0.93[/tex]
[tex]f(20) = 93\%[/tex]
[tex]f(30) = -0.03 * 30 + 1.53[/tex]
[tex]f(30) = -0.9 + 1.53[/tex]
[tex]f(30) = 0.63[/tex]
[tex]f(30) = 63\%[/tex]
[tex]f(40) = -0.03 * 40 + 1.53[/tex]
[tex]f(40) = -1.2 + 1.53[/tex]
[tex]f(40) = 0.33[/tex]
[tex]f(40) = 33\%[/tex]
[tex]f(50) = -0.03 * 50 + 1.53[/tex]
[tex]f(50) = -1.5 + 1.53[/tex]
[tex]f(50) = 0.03[/tex]
[tex]f(50) = 3\%[/tex]