Respuesta :

ok
f'(xe)-f'(x)
f'(x)(e)+f(e)(x)-1
e+0-1

2nd
f(x)=e-1
f'(e)-f'(1)
0

200th derivitive is 0

Answer:

[tex]\frac{d^{200}}{dx^{200}}(xe^{-x})=e^{-x}(x-200)[/tex]

Step-by-step explanation:

The given function is

[tex]f(x)=xe^{-x}[/tex]

Differential with respect to x.

[tex]f'(x)=\frac{d}{dx}(xe^{-x})[/tex]

[tex]f'(x)=x\frac{d}{dx}e^{-x}+e^{-x}\frac{d}{dx}x[/tex]

[tex]f'(x)=x(-e^{-x})+e^{-x}(1)[/tex]

[tex]f'(x)=-xe^{-x}+e^{-x}[/tex]

[tex]f'(x)=-e^{-x}(x-1)[/tex]

Differential with respect to x.

[tex]f''(x)=e^{-x}x-2e^{-x}[/tex]

[tex]f''(x)=e^{-x}(x-2)[/tex]

Differential with respect to x.

[tex]f'''(x)=-e^{-x}(x-3)[/tex]

Similarly, the nth derivative is

[tex]\frac{d^{n}}{dx^{n}}(xe^{-x})=(-1)^ne^{-x}(x-n)[/tex]

The 200th derivative of f(x) is

[tex]\frac{d^{200}}{dx^{200}}(xe^{-x})=e^{-x}(x-200)[/tex]