Respuesta :

4x^2+ 4x – 3 = 0

Using Quadratic Formula:

x = [-4 + sqrt(16+48)]/8
or
x = [-4 - sqrt(16+48)]/8

Solving First equation:
x = [-4 + sqrt(16+48)]/8
   = -4+8/8
   = 0.5

Solving Second equation:
x = [-4 - sqrt(16+48)]/8
   = - 4 - 8 /8
   = -12/8
   = -1.5

Answer:

The values of x are

[tex]x=-1.5\ , 0.5[/tex]

Step-by-step explanation:

we have

[tex]4x^{2}+4x-3=0[/tex]

Group terms that contain the same variable, and move the constant to the opposite side of the equation

[tex]4x^{2}+4x=3[/tex]

Factor the leading coefficient

[tex]4(x^{2}+x)=3[/tex]

Complete the square. Remember to balance the equation by adding the same constants to each side.

[tex]4(x^{2}+x+.25)=3+1[/tex]

[tex]4(x^{2}+x+.25)=4[/tex]

[tex](x^{2}+x+.25)=1[/tex]

Rewrite as perfect squares

[tex](x+0.5)^{2}=1[/tex]

Square root both sides

[tex]x+0.5=(+/-)1[/tex]

[tex]x=-0.5(+/-)1[/tex]

[tex]x=-0.5+1=0.5[/tex]

[tex]x=-0.5-1=-1.5[/tex]