Respuesta :

distance between 2 points, (x1,y1) and (x2,y2) is
D=[tex] \sqrt{(x2-x1)^2+(y2-y1)^2} [/tex]
points (0,0) and (6,3)

D=[tex] \sqrt{(6-0)^2+(3-0)^2} [/tex]
D=[tex] \sqrt{(6-0)^2+(3-0)^2} [/tex]
D=[tex] \sqrt{(6)^2+(3)^2} [/tex]
D=[tex] \sqrt{36+9} [/tex]
D=[tex] \sqrt{45} [/tex]
D=3√5

legnth of AB is 3√5


Answer:

Length of ab is:

3√5

Step-by-step explanation:

Distance(D) between 2 points, (x1,y1) and (x2,y2) is  given by

D=[tex]\sqrt{(x2-x1)^2+(y2-y1)^2}[/tex]

Here we have to find the distance between the points (0,0) and (6,3)

i.e. (x1,y1)=(0,0) and (x2,y2)=(6,3)

D=[tex] \sqrt{(6-0)^2+(3-0)^2} [/tex]

D=[tex] \sqrt{(6)^2+(3)^2} [/tex]

D=[tex] \sqrt{36+9} [/tex]

D=[tex] \sqrt{45} [/tex]

D=3√5

Hence, Length of ab is:

3√5