Respuesta :

[tex] \frac{2}{11} +/- \frac{ \sqrt{15} }{11} [/tex]

Answer:

Given the quadratic equation: [tex]11x^2- 4x = 1[/tex]

we can write this equation as;

[tex]11x^2-4x-1 = 0[/tex]                   ......[1]

A quadratic equation is in the form of [tex]ax^2+bx+c =0[/tex] where a, b , c are coefficient and

the solution for this equation is given by;

[tex]x = \frac{-b\pm\sqrt{b^2-4ac}}{2a}[/tex]   where a≠0

On comparing the above formula with an equation [1] we have;    

a = 11 , b = -4  and  c =-1

Substitute these given values to solve for x;

[tex]x = \frac{-(-4)\pm\sqrt{(-4)^2-4(11)(-1)}}{2(11)}[/tex]

[tex]x = \frac{ 4\pm\sqrt{16+44}}{22}[/tex]

[tex]x = \frac{ 4\pm\sqrt{60}}{22}[/tex]

or

[tex]x = \frac{ 4\pm 2\sqrt{15}}{22}[/tex]

[tex]x = \frac{ 2\pm \sqrt{15}}{11}[/tex]

Simplify:

[tex]x= \frac{2 + \sqrt{15} }{11}[/tex] and [tex]x= \frac{2 - \sqrt{15} }{11}[/tex]

Therefore, the values of x are;

[tex]x= \frac{2 + \sqrt{15} }{11}[/tex] , [tex]\frac{2 - \sqrt{15} }{11}[/tex]