Respuesta :

Answer:

The solution to the system of equations is:

[tex]x=\frac{25}{3},\:y=-\frac{11}{9}[/tex]

Step-by-step explanation:

Given the system of equations

[tex]5x + 3y = 38[/tex]

[tex]2x + 3y = 13[/tex]

solving the system of equations

[tex]\begin{bmatrix}5x+3y=38\\ 2x+3y=13\end{bmatrix}[/tex]

Multiply 5x+3y=38 by 2:    10x+6y=76

Multiply 2x+3y=13 by 5:     10x+15y=65

[tex]\begin{bmatrix}10x+6y=76\\ 10x+15y=65\end{bmatrix}[/tex]

so

[tex]10x+15y=65[/tex]

[tex]-[/tex]

[tex]\underline{10x+6y=76}[/tex]

[tex]9y=-11[/tex]

now solving 9y = -11 for y

[tex]9y=-11[/tex]

divide both sides by 9

[tex]\frac{9y}{9}=\frac{-11}{9}[/tex]

Simplify

[tex]y=-\frac{11}{9}[/tex]

For 10x+6y=76 plug in y = -11/9

[tex]10x+6\left(-\frac{11}{9}\right)=76[/tex]

subtract 6(-11/9) from both sides

[tex]10x+6\left(-\frac{11}{9}\right)-6\left(-\frac{11}{9}\right)=76-6\left(-\frac{11}{9}\right)[/tex]

[tex]10x=\frac{250}{3}[/tex]

Divide both sides by 10

[tex]\frac{10x}{10}=\frac{\frac{250}{3}}{10}[/tex]

[tex]x=\frac{25}{3}[/tex]

Therefore, the solution to the system of equations is:

[tex]x=\frac{25}{3},\:y=-\frac{11}{9}[/tex]