Respuesta :

Given:

f(x) is an exponential function.

[tex]f(-0.5)=27[/tex]

[tex]f(1.5)=21[/tex]

To find:

The value of f(0.5), to the nearest hundredth.

Solution:

The general exponential function is

[tex]f(x)=ab^x[/tex]

For, x=-0.5,

[tex]f(-0.5)=ab^{-0.5}[/tex]

[tex]27=ab^{-0.5}[/tex]          ...(i)

For, x=1.5,

[tex]f(1.5)=ab^{1.5}[/tex]

[tex]21=ab^{1.5}[/tex]          ...(ii)

Divide (ii) by (i).

[tex]\dfrac{21}{27}=\dfrac{ab^{1.5}}{ab^{-0.5}}[/tex]

[tex]\dfrac{7}{9}=b^2[/tex]

Taking square root on both sides, we get

[tex]\dfrac{\sqrt{7}}{3}=b[/tex]

[tex]b\approx 0.882[/tex]

Putting b=0.882 in (i), we get

[tex]27=a(0.882)^{-0.5}[/tex]

[tex]27=a(1.0648)[/tex]

[tex]\dfrac{27}{1.0648}=a[/tex]

[tex]a\approx 25.357[/tex]

Now, the required function is

[tex]f(x)=25.357(0.882)^x[/tex]

Putting x=0.5, we get

[tex]f(0.5)=25.357(0.882)^{0.5}[/tex]

[tex]f(0.5)=23.81399[/tex]

[tex]f(0.5)\approx 23.81[/tex]

Therefore, the value of f(0.5) is 23.81.