Respuesta :

Answer:

The perimeter of ΔABC is 43 units

Step-by-step explanation:

An illustrative diagram is shown in the attachment below.

To find the perimeter of the triangle, we will first determine the length of the unknown sides.

First, we can determine /BC/ using the Sine rule

From Sine rule

[tex]\frac{SinA}{a} = \frac{SinB}{b} = \frac{SinC}{c}[/tex]

∴ [tex]\frac{SinA}{a} = \frac{SinC}{c}[/tex]

In the diagram, [tex]a = /BC/[/tex] and [tex]c = /AB/ = 12[/tex]

m∠A=60° and m∠C=45°

∴ [tex]\frac{Sin60}{/BC/} = \frac{Sin45}{12}[/tex]

[tex]/BC/ = \frac{12 \times Sin60}{Sin45}[/tex]

[tex]/BC/ = 6\sqrt{6}[/tex]

To find /AC/, will first determine m∠B

m∠A + m∠B + m∠C = 180° (Sum of angles in a triangle)

60° +m∠B + 45° = 180°

m∠B + 105° = 180°

m∠B = 180° - 105°

m∠B = 75°

Also, using the sine rule

[tex]\frac{SinB}{b} = \frac{SinC}{c}[/tex]

From the diagram, [tex]b = /AC/[/tex]

[tex]\frac{Sin75}{/AC/} = \frac{Sin45}{12}[/tex]

[tex]/AC/ = \frac{12 \times Sin75}{Sin45}[/tex]

[tex]/AC/ = 6 + 6\sqrt{3}[/tex]

Now,

The perimeter of ΔABC = /AB/ + /BC/ + /AC/

= [tex]12 + 6\sqrt{6} + 6+6\sqrt{3}[/tex]

= 43.09 units

≅ 43 units

Hence, the perimeter of ΔABC is 43 units.

Ver imagen Abdulazeez10

Answer:

Using the figure above, if AB = RT and ∠R = 70°, then ________.

ΔABC ~ ΔRTS

m ∠ S = 50°

ΔABC ≅ ΔRTS

m ∠ S = 60°

Step-by-step explanation: