Answer:
n(x) = g(f(h(x)))
Step-by-step explanation:
Given
[tex]f(x) = x^3[/tex]
[tex]g(x) = x-7[/tex]
[tex]h(x) = x + 2[/tex]
Required
Which function represents [tex]n(x) = (x + 2)^3 - 7[/tex]
Start by solving for f(h(x)):
Given that:
[tex]f(x) = x^3[/tex] and [tex]h(x) = x + 2[/tex]
Substitute x + 2 for the x in f(x)
[tex]f(h(x)) = (x + 2)^3[/tex]
Next, solve for g(f(h(x)))
Given that:
[tex]g(x) = x-7[/tex] and [tex]f(h(x)) = (x + 2)^3[/tex]
Substitute (x + 2)^3 for the x in g(x)
[tex]g(f(h(x))) = (x + 2)^3 - 7[/tex]
Recall that:
[tex]n(x) = (x + 2)^3 - 7[/tex]
Hence:
[tex]n(x) = g(f(h(x))) = (x + 2)^3 - 7[/tex]