Respuesta :

Answer:

We have point P(-3,-6).

Step-by-step explanation:

We want to find a point P(x,y).

Since it is on the directed line segment AB in the ratio 3:4, it means that:

[tex]P - A = \frac{3}{3+4}(B - A)[/tex]

So

[tex]P - A = \frac{3}{7}(B-A)[/tex]

We apply this to both the x-coordinate and y-coordinate of P.

x-coordinate:

x-coordinate of A: -9

x-coordinate of B: 5

x-coordinate of P: x

So

[tex]P - A = \frac{3}{7}(B-A)[/tex]

[tex]x - (-9) = \frac{3}{7}(5-(-9))[/tex]

[tex]x + 9 = \frac{3}{7} \times 14[/tex]

[tex]x + 9 = 6[/tex]

[tex]x = -3[/tex]

y-coordinate:

y-coordinate of A: -9

y-coordinate of B: -2

y-coordinate of P: y

So

[tex]P - A = \frac{3}{7}(B-A)[/tex]

[tex]y - (-9) = \frac{3}{7}(-2-(-9))[/tex]

[tex]y + 9 = \frac{3}{7} \times 7[/tex]

[tex]y + 9 = 3[/tex]

[tex]y = -6[/tex]

We have point P(-3,-6).