Respuesta :
Answer:
Shift 4 units down: [tex]g(x) = 2x - 10[/tex]
Stretching f(x) by 4 : [tex]g(x) =8x - 24[/tex]
Shift 4 units left: [tex]g(x) = 2x - 14[/tex]
Compress by 1/4 units : [tex]g(x) = 8x - 6[/tex]
Step-by-step explanation:
Given
[tex]f(x) = 2x - 6[/tex]
Required
Match the transformations (See attachment)
Shift 4 units down
Shifting down a function is represented as:
[tex]g(x) = f(x) - b[/tex]
In this case:
[tex]b = 4[/tex]
Substitute expression for f(x) and 4 for b in [tex]g(x) = f(x) - b[/tex]
[tex]g(x) = 2x - 6 - 4[/tex]
[tex]g(x) = 2x - 10[/tex]
Stretching f(x) by 4
Stretching a function by some units is represented as:
[tex]g(x) =b.f(x)[/tex]
In this case:
[tex]b = 4[/tex]
Substitute expression for f(x) and 4 for b in [tex]g(x) =b.f(x)[/tex]
[tex]g(x) =4 * (2x - 6)[/tex]
[tex]g(x) =8x - 24[/tex]
Shift 4 units left
Shifting a function to the left is represented as:
[tex]g(x) = f(x - b)[/tex]
In this case:
[tex]b = 4[/tex]
Substitute expression for f(x) and 4 for b in [tex]g(x) = f(x - b)[/tex]
[tex]g(x) = f(x-4)[/tex]
Calculating f(x - 4)
[tex]f(x) = 2x - 6[/tex]
[tex]f(x - 4) = 2(x - 4) - 6[/tex]
[tex]f(x - 4) = 2x - 8 - 6[/tex]
[tex]f(x - 4) = 2x - 14[/tex]
Hence:
[tex]g(x) = 2x - 14[/tex]
Compress by 1/4 units
This means that the function is stretched by [tex]1/\frac{1}{4}[/tex]
Compressing a function is represented as:
[tex]g(x) =f(bx)[/tex]
In this case:
[tex]b = 1/\frac{1}{4}[/tex]
[tex]b = 1 * \frac{4}{1}[/tex]
[tex]b = 4[/tex]
Substitute expression for f(x) and 4 for b in [tex]g(x) =f(bx)[/tex]
[tex]g(x) =f(4x)[/tex]
Calculating f(4x)
[tex]f(4x) = 2(4x) - 6[/tex]
[tex]f(4x) = 8x - 6[/tex]
Hence:
[tex]g(x) = 8x - 6[/tex]
