A very long solid insulating cylinder has radius R = 0.1 m and uniform charge density rho0= 10-3 C/m3. Find the electric field at distance r from the axis inside the cylinder in terms of r/R.​

Respuesta :

Answer:

[tex]E = (0.56 \times 10^8 ) r \ \ N/c[/tex]

Explanation:

Given that:

[tex]\rho_o = (10^{-3} ) \ c/m^3[/tex]

R = (0.1) m

To find  the electric field for r < R by using Gauss Law

[tex]{\oint}E^{\to}* da^{\to} = \dfrac{Q_{enclosed}}{\varepsilon_o} --- (1)[/tex]

For r < R

[tex]Q_{enclosed}=(\rho) ( \pi r^2 ) l[/tex]

[tex]E*(2 \pi rl)= \dfrac{\rho ( \pi r ^2 l)}{\varepsilon_o}[/tex]

[tex]E= \dfrac{\rho ( r)}{2 \varepsilon_o}[/tex]

where;

[tex]\varepsilon_o = 8.85 \times 10^{-12}[/tex]

[tex]E= \dfrac{10^{-3} ( r)}{2 (8.85 \times 10^{-12})}[/tex]

[tex]E= \dfrac{10^{-3} ( r)}{2 (8.85 \times 10^{-12})}[/tex]

[tex]E = (0.56 \times 10^8 ) r \ \ N/c[/tex]