Respuesta :
Answer:
76x^2 - 58x
Step-by-step explanation:
Area of the Yard: 7x(12x-6) = 84x^2-42x
Area of the Shed: 4x(2x+4) = 8x^2+16x
Area of the Lawn: 84x^2-42x -(8x^2+16x) = (84x^2-8x^2) + (-42x-16x) =
76x^2 - 58x
The answer is "[tex]\bold{84x^2 - 42x, 8x^2 + 16x,\ and\ 76x^2 - 58x}[/tex]", and the further calculation steps can be defined as follows:
For step 1:
Calculating the lawn area:
[tex]\to \bold{7x (12x -6) = 84x^2 - 42x}[/tex]
For step 2:
Calculating the shed area:
[tex]\to \bold{4x( 2x + 4) = 8x^2 + 16x}[/tex]
For step 3:
Calculating the lawn area by subtracting the area of the shed from the area of the yard:
[tex]\to\bold{ 7x (12x -6) - (4x(2x+4))}\\\\\to\bold{ 84x^2-42x -(8x^2+16x)}\\\\\to\bold{ 84x^2-42x -8x^2-16x}\\\\\to\bold{ 76x^2-58x}\\\\[/tex]
So, the final answer is "[tex]\bold{84x^2 - 42x, 8x^2 + 16x,\ and\ 76x^2 - 58x}[/tex]".
Learn more:
Area calculator: brainly.com/question/22951582
