Respuesta :

(x + 5)(x + 3)
x+5=0, solve it and you get -5.
x+3=0, solve it and you get -3.

The answers are -5 and -3.

Answer:

[tex]x_{1} =-5\\and \\x_{2} =-3[/tex]

Step-by-step explanation:

Solve by using factoring ------->

rewrite the expresion

x^2+8x+15=0

x^2+5x+3x+15=0

factor out x from the expression

x^2+5x+3x+15=0

xx(x+5)+3x+15=0

xx(x+5)+3(x+5)=0

factor out x+5 from expression

(x+5)x(x+3)=0

when the product of factors equals 0, at least one factor is 0

x+5=0

x+3=0

solve the equation for x

x = -5

x = -3

the equation has 2 solutions

[tex]x_{1} =-5, x_{2} =-3[/tex]

Step-by-step Explanation:

Quadratic formula

[tex]x=\frac{-8+\sqrt{8^{2} -4x1x15} }{2x1}[/tex]

any expression multiplied by 1 remains the same

[tex]x=\frac{-8+\sqrt{8^{2}-4x15 } }{2}[/tex]

evaluate the power

[tex]x=\frac{-8+\sqrt{64-4x15} }{2}[/tex]

multiply the numbers

[tex]x=\frac{-8+\sqrt{64-60} }{2}[/tex]

subtract the numbers

[tex]x=\frac{8+\sqrt{4} }{2}[/tex]

calculate the square root

[tex]x=\frac{-8+2}{2}[/tex]

write solution with a + sign and a - sign

[tex]x=\frac{-8+2}{2} \\x=\frac{-8-2}{2}[/tex]

calculate the value

[tex]x=-3\\x=-5[/tex]

the equation has 2 solutions

[tex]x=-3\\x=-5 \\and\\x_{1} =-5\\x_{2} =-3[/tex]