Respuesta :

Answer:

Step-by-step explanation:

From the picture attached,

∠4 = 45°, ∠5 = 135° and ∠10 = ∠11

Part A

∠1 = ∠4 = 45°  [Vertically opposite angles]

∠1 + ∠3 = 180° [Linear pair of angles]

∠3 = 180° - ∠1

     = 180° - 45°

     = 135°

∠2 = ∠3 = 135°  [Vertically opposite angles]

∠8 = ∠5 = 135° [Vertically opposite angles]

∠5 + ∠6 = 180° [Linear pair of angles]

∠6 = 180° - 135°

∠6 = 45°

∠7 = ∠6 = 45° [Vertically opposite angles]

By triangle sum theorem,

m∠4 + m∠7 + m∠10 = 180°

45° + 45° + m∠10 = 180°

m∠10 = 180° - 90°

m∠10 = 90°

m∠10 = m∠12 = 90°  [Vertically opposite angles]

m∠10 = m∠11 = 90° [Given]

Part B

1). ∠1 ≅ ∠4  [Vertically opposite angles]

2). ∠7 + ∠5 = 180° [Linear pair]

3). ∠9 + ∠10 = 180° [Linear pair]