Simplify the following expression
Simplifying expressions
8th grade math
Algebra 1

Can someone explain why
(-5k^2m)(2km)^4(3km^4)^2
——————————————
k^2m^3
Simplifies to -720k^6m^10

But 3m/m^4 simplifies to 3/m^2
Even though their both fractions how come only one stays a fraction? What’s the difference so I can figure out in the future?

Respuesta :

Answer:

1. [tex]\frac{(-5k^{2}m)(2km)^{4} (3km^{4}) ^{2}}{k^{2}m^{3}}[/tex] = -720[tex]k^{6}m^{10}[/tex]

2. [tex]\frac{3m}{m^{4} }[/tex] = [tex]\frac{3}{m^{3} }[/tex] (or 3[tex]m^{-3}[/tex])

Step-by-step explanation:

1. The given expression is:

[tex]\frac{(-5k^{2}m)(2km)^{4} (3km^{4}) ^{2}}{k^{2}m^{3}}[/tex]

With respect to the principle of exponential, we have;

[tex]\frac{(-5k^{2}m)(2^{4}k^{4} m^{4})(3^{2}k^{2}m^{8})}{k^{2} m^{3} }[/tex]  = [tex]\frac{(-5k^{2}m)(16k^{4} m^{4})(9k^{2}m^{8} }{k^{2}m^{3} }[/tex]

 Applying the law of indices,              

= [tex]\frac{(-5*16*9)(k^{2+4+2})(m^{1+4+8}) }{k^{2} m^{3} }[/tex]

= [tex]\frac{-720k^{8} m^{13} }{k^{2}m^{3} }[/tex]

= -720[tex]k^{8}m^{13}[/tex] x [tex]k^{-2} m^{-3}[/tex]

= -720[tex]k^{8-2} m^{13-3}[/tex]

= -720[tex]k^{6}m^{10}[/tex]

2. [tex]\frac{3m}{m^{4} }[/tex]

divide the numerator and denominator with common factor m,

= [tex]\frac{3}{m^{3} }[/tex]

This can not be simplified further since there are no more common factors, so that;

[tex]\frac{3m}{m^{4} }[/tex] = [tex]\frac{3}{m^{3} }[/tex] (or 3[tex]m^{-3}[/tex])