Respuesta :

Answer:

sin²θ

Step-by-step explanation:

Using the trigonometric identities

sin²x + cos²x = 1 ⇒ cos²x = 1 - sin²x

cotx = [tex]\frac{cosx}{sinx}[/tex]

Given

[tex]\frac{1-sin^20}{cot^20}[/tex]

= [tex]\frac{cos^20}{\frac{cos^20}{sin^20} }[/tex]

= cos²θ × [tex]\frac{sin^20}{cos^20}[/tex] ( cancel the cos²θ )

= sin²θ