Respuesta :
Step-by-step explanation:-
Let p + q = 2( p - q) be eqn.1 and pq = 675 be eqn.2
Now , lets expand eqn.1
[tex]=> p + q = 2p - 2q[/tex]
[tex]=> 2p - p = 2q + q[/tex]
[tex]=> p = 3q[/tex]
Lets put the value of p in eqn.2
[tex]=> 3q \times q = 675[/tex]
[tex]=> 3q^{2} = 675[/tex]
[tex]=> q^{2} = \frac{675}{3} = 225[/tex]
[tex]=> q = \sqrt{225} = +15 \: or \: -15[/tex]
Lets find out the value of p.
When q = +15 , [tex]p = 3 \times 15 = 45[/tex]
When q = -15 , [tex]p = 3 \times - 15 = -45[/tex]
Hence ,
p = ±45
q = ±15
Answer:
q=15
p=45
Step-by-step explanation:
p+q=2(p-q)
p+q=2p-2q
simplify: add 2q to each side and subtract one p from each side of the equation.
p=3q
given that pq=675, substitute:
(3q)q=675
3q^2=675
q^2=225
q=15
then p=3q or p=3(15)=45
p=45