Respuesta :

Step-by-step explanation:-

Let p + q = 2( p - q) be eqn.1 and pq = 675 be eqn.2

Now , lets expand eqn.1

[tex]=> p + q = 2p - 2q[/tex]

[tex]=> 2p - p = 2q + q[/tex]

[tex]=> p = 3q[/tex]

Lets put the value of p in eqn.2

[tex]=> 3q \times q = 675[/tex]

[tex]=> 3q^{2} = 675[/tex]

[tex]=> q^{2} = \frac{675}{3} = 225[/tex]

[tex]=> q = \sqrt{225} = +15 \: or \: -15[/tex]

Lets find out the value of p.

When q = +15 , [tex]p = 3 \times 15 = 45[/tex]

When q = -15 , [tex]p = 3 \times - 15 = -45[/tex]

Hence ,

p = ±45

q = ±15

Answer:

q=15

p=45

Step-by-step explanation:

p+q=2(p-q)

p+q=2p-2q

simplify: add 2q to each side and subtract one p from each side of the equation.

p=3q

given that pq=675, substitute:

(3q)q=675

3q^2=675

q^2=225

q=15

then p=3q or p=3(15)=45

p=45