Respuesta :

Answer:

[tex]S_9 = 442845[/tex]

Step-by-step explanation:

Given

[tex]Sequence: 45,135,405,1215,3645[/tex]

Required:

The sum of the first 9 terms

We'll solve this question using the explicit formula:

Because it is a geometric sequence, we first calculate the common ratio (r).

[tex]r = \frac{T_n}{T_{n-1}}[/tex]

Let n = 2;

So, we have:

[tex]r = \frac{T_2}{T_{2-1}}[/tex]

[tex]r = \frac{T_2}{T_1}[/tex]

[tex]T_2 = 135; T_1 = 45[/tex]

So, we have:

[tex]r = \frac{135}{45}[/tex]

[tex]r = 3[/tex]

Explicitly, the sum of  n terms of a geometric sequence is:

[tex]S_n = \frac{a(r^n - 1)}{r - 1}[/tex]

[tex]a = T_1 = 45[/tex]

[tex]r = 3[/tex]

[tex]n = 9[/tex]

The formula becomes:

[tex]S_n = \frac{a(r^n - 1)}{r - 1}[/tex]

[tex]S_9 = \frac{45* (3^9 - 1)}{3 - 1}[/tex]

[tex]S_9 = \frac{45* (3^9 - 1)}{2}[/tex]

[tex]S_9 = \frac{45* (19683 - 1)}{2}[/tex]

[tex]S_9 = \frac{45* (19682)}{2}[/tex]

[tex]S_9 = 45* 9841[/tex]

[tex]S_9 = 442845[/tex]

Hence, the sum of the first 9 terms is 442845