Respuesta :

Answer:

[tex]y = -\frac{8}{x}[/tex]

Step-by-step explanation:

Given

Inverse Variation:

[tex]Points: \{(-1, 8), (4, -2), (-2, 4)\}[/tex]

Required

Determine the equation of the relation

An inverse relation is represented as:

[tex]y = \frac{k}{x}[/tex]

Where k = constant of variation

Make k the subject:

[tex]k = xy[/tex]

When x = -1, y = 8

So, we have:

[tex]k = -1 * 8[/tex]

[tex]k = -8[/tex]

When x = 4, y = -2

[tex]k = 4 * -2[/tex]

[tex]k = -8[/tex]

When x = -2, y = 4

[tex]k= -2 * 4[/tex]

[tex]k = -8[/tex]

From above calculations, we've established that:

[tex]k = -8[/tex]

Substitute -8 for k in [tex]y = \frac{k}{x}[/tex]

[tex]y = \frac{-8}{x}[/tex]

[tex]y = -\frac{8}{x}[/tex]

Hence, the equation is:

[tex]y = -\frac{8}{x}[/tex]