Respuesta :

Answer:

Half life of the radioactive element is 5 days.

Step-by-step explanation:

Formula to get the final amount after the radioactive decay in 't' days,

[tex]A_t=A_0e^{-\lambda t}[/tex]

Here [tex]A_0[/tex] = Initial amount

λ = Decay constant

t = duration of decay

[tex]A_t[/tex] = Final amount

[tex]1000=100000e^{-\lambda(34)}[/tex]

0.01 = [tex]e^{-34\lambda}[/tex]

ln(0.01) = [tex]\text{ln}(-e^{34\lambda}})[/tex]

-4.6052 = -34λ

λ = 0.13544

Since, λ = [tex]\frac{\text{ln}(2)}{t_{\frac{1}{2}}}[/tex]

[tex]t_{\frac{1}{2}}=\frac{\text{ln}2}{0.13544}[/tex]

    = 5.11

    ≈ 5 days

Therefore, half life of the radioactive element is 5 days.