A parallelogram has side lengths of 13 and 17 and an angle that measures 64°. Parallelogram W Y Z V is shown. The lengths of W V and Y Z are 13 and the lengths of W Y and V Z are 17. A diagonal is drawn from point V to point Y. The length of V Y is x. Angle V W Y is 64 degrees. Law of cosines: a2 = b2 + c2 – 2bccos(A) What is x, the length of the diagonal, to the nearest whole number? 16 18 19 21

Respuesta :

Answer:

[tex]16\ \text{units}[/tex]

Step-by-step explanation:

[tex]WV=13\ \text{units}[/tex]

[tex]WY=17\ \text{units}[/tex]

[tex]\angle VWY=64^{\circ}[/tex]

[tex]VY=x[/tex]

From cosine rule we have

[tex]x=\sqrt{WV^2++WY^2-2WV\times WY\cos \angle VWY}\\\Rightarrow x=\sqrt{13^2+17^2-2\times 13\times 17\times \cos 64^{\circ}}\\\Rightarrow x=16.25\approx 16\ \text{units}[/tex]

Length of [tex]x[/tex] is [tex]16\ \text{units}[/tex].

Ver imagen boffeemadrid

Answer:

16 C

Step-by-step explanation:

is right on edge 2021