Triangle P Q R is shown. The length of P Q is 20 and the length of P R is 12. Angle Q P R is 68 degrees and angle P Q R is 36 degrees. Trigonometric area formula: Area = One-half a b sine (C) What is the area of triangle PQR? Round to the nearest tenth of a square unit. 70.5 square units 111.3 square units 185.4 square units 222.5 square units

Respuesta :

Answer:

[tex]111.3\ \text{square units}[/tex]

Step-by-step explanation:

[tex]PQ=20\ \text{units}[/tex]

[tex]PR=12\ \text{units}[/tex]

[tex]\angle QPR=68^{\circ}[/tex]

[tex]\angle PQR=36^{\circ}[/tex]

Area of the triangle is given by

[tex]A=\dfrac{1}{2}\times PQ\times PR\times\sin \angle QPR\\\Rightarrow A=\dfrac{1}{2}\times 20\times 12\times \sin68^{\circ}\\\Rightarrow A=111.26\approx 111.3\ \text{square units}[/tex]

The area of the triangle is [tex]111.3\ \text{square units}[/tex].

Ver imagen boffeemadrid

Answer:

111.3

Step-by-step explanation: