Respuesta :
Answer:
Step-by-step explanation:
Given that:
[tex]r = 2.1x^2 - 14.3x + 35[/tex]
For year 2000; x = 0
So; [tex]r (0) = 2.1(0)^2 - 14.3(0) + 35[/tex]
[tex]r (0) = 35[/tex]
For year 2001; x = 1
[tex]r (1) = 2.1(1)^2 - 14.3(1) + 35[/tex]
[tex]r (1) =22.8[/tex]
For year 2002; x = 2
[tex]r (2) = 2.1(2)^2 - 14.3(2) + 35[/tex]
[tex]r (2) = 14.8[/tex]
For year 2003; x = 3
[tex]r (3) = 2.1(3)^2 - 14.3(3) + 35[/tex]
[tex]r (3) = 11[/tex]
For year 2005; x = 5
[tex]r (5) = 2.1(5)^2 - 14.3(5) + 35[/tex]
r(5) = 16
For year 2010; x = 10
[tex]r (10) = 2.1(10)^2 - 14.3(10) + 35[/tex]
[tex]r(10) = 102[/tex]
For year 2018; x =18
[tex]r(18) = 2.1(18)^2 - 14.3 (18) + 35[/tex]
[tex]r(18) = 458[/tex]
Thus, the table can be presented as seen below.
Year 2000 2001 2002 2003 2005 2010 2018
x 0 1 2 3 5 10 18
r(x) 35 22.8 14.8 11 16 102 458
SO, we will notice that the revenue for the albums starts decreasing and when it reaches the minimum, it started increasing with increasing x.
The attribute behind this trend is because the revenue function r(x) typically implies that it is a quadratic function.