Respuesta :

Given:

The different sets of ordered pairs in the options.

To find:

The sets of ordered pairs that show equivalent ratios

Solution:

The set of ordered pairs show equivalent ratios, if

[tex]\dfrac{y}{x}=k[/tex]

Where, k is a constant.

For option 1,

(1, 2), (2, 3), (4, 7)

[tex]\dfrac{2}{1}\neq \dfrac{3}{2}[/tex]

For option 2,

(2, 2), (4, 4), (6, 6)

[tex]\dfrac{2}{2}=\dfrac{4}{4}=\dfrac{6}{6}=1=k[/tex]

The set of ordered pairs (2, 2), (4, 4), (6, 6) show equivalent ratios.

For option 3,

(3, 1), (4, 1), (5, 1)

[tex]\dfrac{1}{3}\neq \dfrac{1}{4}[/tex]

For option 4,

(4, 1), (8, 2), (12, 3)

[tex]\dfrac{1}{4}=\dfrac{2}{8}=\dfrac{3}{12}=k[/tex]

The set of ordered pairs (4, 1), (8, 2), (12, 3) show equivalent ratios.

For option 5,

(2, 1), (4, 3), (5, 4)

[tex]\dfrac{1}{2}\neq \dfrac{3}{4}[/tex]

So, sets of ordered pairs in options 1, 3 and 5 does not show equivalent ratios.

Therefore, the correct options are 2 and 4.