Respuesta :

Answer:

We conclude that:

[tex]c=-\frac{5n}{3\left(-n+2\right)};\quad \:n\ne \:2[/tex]

Step-by-step explanation:

Given the expression

[tex]\frac{4}{2n}+\frac{5}{3c}=1[/tex]

Let us solve for 'c'

[tex]\frac{4}{2n}+\frac{5}{3c}=1[/tex]

Least Common Multiplier of 2n, 3c:   6nc

Now multiply both sides by LCM = 6nc

[tex]\frac{4}{2n}\cdot \:6nc+\frac{5}{3c}\cdot \:6nc=1\cdot \:6nc[/tex]

Simplify

[tex]12c+10n=6nc[/tex]

Subtract 10n from both sides

[tex]12c+10n-10n=6nc-10n[/tex]

Simplify

[tex]12c=6nc-10n[/tex]

Subtract 6nc from both sides

[tex]12c-6nc=6nc-10n-6nc[/tex]

Simplify

[tex]12c-6nc=-10n[/tex]

Factor 12c - 6nc = 6c(2-n)

[tex]6c\left(2-n\right)=-10n[/tex]

Divide both sides by 6(2-n);  n≠2

[tex]\frac{6c\left(2-n\right)}{6\left(2-n\right)}=\frac{-10n}{6\left(2-n\right)};\quad \:n\ne \:2[/tex]

simplify

[tex]c=-\frac{5n}{3\left(-n+2\right)};\quad \:n\ne \:2[/tex]

Therefore, we conclude that:

[tex]c=-\frac{5n}{3\left(-n+2\right)};\quad \:n\ne \:2[/tex]