Can anyone please help me figure this problem out?

Answer:
x = 12
Step-by-step explanation:
Reference angle = 45°
Opposite side length = x
Hypotenuse = 12√2
Thus, to find x, apply trigonometric ratio.
[tex] sin(45) = \frac{x}{12\sqrt{2}} [/tex]
Multiply both sides by 12√2
[tex] sin(45)*{12\sqrt{2}} = x [/tex]
[tex] \frac{1}{\sqrt{2}}*{12\sqrt{2}} = x [/tex] (sin 45 = 1/√2)
[tex] \frac{1*12\sqrt{2}}{\sqrt{2}} = x [/tex]
[tex] \frac{12\sqrt{2}}{\sqrt{2}} = x [/tex]
12 = x
x = 12