Respuesta :

Answer:

x = 12

Step-by-step explanation:

Reference angle = 45°

Opposite side length = x

Hypotenuse = 12√2

Thus, to find x, apply trigonometric ratio.

[tex] sin(45) = \frac{x}{12\sqrt{2}} [/tex]

Multiply both sides by 12√2

[tex] sin(45)*{12\sqrt{2}} = x [/tex]

[tex] \frac{1}{\sqrt{2}}*{12\sqrt{2}} = x [/tex] (sin 45 = 1/√2)

[tex] \frac{1*12\sqrt{2}}{\sqrt{2}} = x [/tex]

[tex] \frac{12\sqrt{2}}{\sqrt{2}} = x [/tex]

12 = x

x = 12