Respuesta :

Answer:

y = 48°

Step-by-step explanation:

In parallelogram STVU,

[tex] m\angle TVU + 60\degree = 180\degree[/tex] (linear pair angles)

[tex] m\angle TVU = 180\degree - 60\degree [/tex]

[tex] m\angle TVU = 120\degree [/tex]

[tex] m\angle UST= m\angle TVU =120\degree [/tex](Opposite angles of a parallelogram)

[tex] m\angle USR= 120\degree(\because S-R-T) [/tex]

[tex] 108\degree + m\angle USR+m\angle PSR= 360\degree[/tex]

[tex] 108\degree + 120\degree+m\angle PSR= 360\degree[/tex]

[tex] 228\degree + m\angle PSR= 360\degree[/tex]

[tex] m\angle PSR= 360\degree - 228\degree [/tex]

[tex] m\angle PSR= 132\degree [/tex]

[tex] y+m\angle PSR= 180\degree [/tex]

(Adjacent angles of a parallelogram)

[tex] y+ 132\degree= 180\degree [/tex]

[tex] y= 180\degree-132\degree[/tex]

[tex] y= 48\degree[/tex]