Respuesta :

Given:

The function is

[tex]f(x)=x^2+3[/tex]

To find:

The slope of the tangent line at x = 11.

Solution:

The slope of the tangent is the value of f'(x) at x=11.

We have,

[tex]f(x)=x^2+3[/tex]

Differentiate with respect to x.

[tex]f'(x)=2x+0[/tex]              [tex]\left[\because \dfrac{d}{dx}x^n=nx^{n-1},\dfrac{d}{dx}C=0,\text{ where C is constant}\right][/tex]

[tex]f'(x)=2x[/tex]

Substitute x=11 in the above equation.

[tex]f'(11)=2(11)[/tex]

[tex]f'(11)=22[/tex]

Therefore, the slope of the tangent at x=11 is 22.