Answer:
[tex]\frac{cosec\alpha(1-cosx^{2} \alpha ) }{sin\alpha cos\alpha } = sec\alpha[/tex]
Step-by-step explanation:
Step(i):-
Given that the trigonometric function
[tex]\frac{cosec\alpha(1-cosx^{2} \alpha ) }{sin\alpha cos\alpha }[/tex]
we know that sin²∝ + cos²∝ = 1
⇒ sin²∝ = 1- cos²∝
Now we have to simplify the given trigonometric function
= [tex]\frac{cosec\alpha(sin^{2} \alpha ) }{sin\alpha cos\alpha }[/tex]
= [tex]\frac{cosec\alpha(sin \alpha ) }{ cos\alpha }[/tex]
Step(ii)
we know that cosec∝ = 1/ sin∝
= [tex]\frac{\frac{1}{sin\alpha } (sin \alpha ) }{ cos\alpha }[/tex]
After cancellation sine function, we get
= [tex]\frac{1 }{ cos\alpha } = sec\alpha[/tex]
Final answer:-
[tex]\frac{cosec\alpha(1-cosx^{2} \alpha ) }{sin\alpha cos\alpha } = sec\alpha[/tex]