Respuesta :

Given:

In an isosceles triangle LMN, LM=MN.

[tex]m\angle M=(3x+17)^\circ,m\angle L=(2x+36)^\circ[/tex]

To find:

The measure of the angles L, M and N.

Solution:

In triangle LMN,

[tex]LM=MN[/tex]                     (Given)

[tex]m\angle N=m\angle L=(2x+36)^\circ[/tex]   (Base angles of an isosceles triangle are equal)

Now,

[tex]m\angle L+m\angle M+m\angle N=180^\circ[/tex]

[tex](2x+36)^\circ+(3x+17)^\circ+(2x+36)^\circ=180^\circ[/tex]

[tex](7x+89)^\circ=180^\circ[/tex]

[tex](7x+89)=180[/tex]

On further simplification, we get

[tex]7x=180-89[/tex]

[tex]7x=91[/tex]

[tex]x=\dfrac{91}{7}[/tex]

[tex]x=13[/tex]

The value of x is 13. Using this value, we get

[tex]m\angle L=(2(13)+36)^\circ[/tex]

[tex]m\angle L=(26+36)^\circ[/tex]

[tex]m\angle L=62^\circ[/tex]

Similarly,

[tex]m\angle M=(3(13)+17)^\circ[/tex]

[tex]m\angle M=(39+17)^\circ[/tex]

[tex]m\angle M=56^\circ[/tex]

And,

[tex]m\angle N=m\angle L[/tex]

[tex]m\angle N=62^\circ[/tex]

Therefore, the measure of angles are [tex]m\angle L=62^\circ,m\angle M=56^\circ,m\angle N=62^\circ[/tex].