Respuesta :
Step-by-step explanation:
By Law of Indices, (a^m)^n = a^(mn).
Hence (h²)^(-3) = h^(-6) or 1/h⁶.
Answer:
[tex] { ({h}^{2}) }^{ - 3}= {h}^{(2 \times ( - 3))} = {h}^{( - 6)} = \frac{1}{ {h}^{6} } \\ [/tex]
Step-by-step explanation:
By Law of Indices, (a^m)^n = a^(mn).
Hence (h²)^(-3) = h^(-6) or 1/h⁶.
Answer:
[tex] { ({h}^{2}) }^{ - 3}= {h}^{(2 \times ( - 3))} = {h}^{( - 6)} = \frac{1}{ {h}^{6} } \\ [/tex]