Jan 258:00:56 AM
Watch help video
Write the equation of the line that passes thought the points (0,4) and (-9, -3).
Put your answer in fully reduced point-slope form, unless it is a vertical or horizontal line.

Respuesta :

Answer:

The equation of the straight line in point-slope form

                            [tex]y - 4 = \frac{7}{9} (x-0)[/tex]

The equation of the straight line

                         7x -9y +36 =0

Step-by-step explanation:

Step(i):-

Given that the points (0,4) and (-9,-3)

The slope of the line

         [tex]m = \frac{y_{2} - y_{1} }{x_{2}- x_{1} } = \frac{-3-4}{-9-0} = \frac{7}{9}[/tex]

Step(ii):-

    Equation of the straight line passing through the point (0,4) and having slope m = 7/9

          [tex]y - y_{1} = m (x-x_{1} )[/tex]

         [tex]y - 4 = \frac{7}{9} (x-0)[/tex]

      9 y - 36 = 7x

              9y = 7x + 36

          [tex]y = \frac{7x}{9} +\frac{36}{9}[/tex]

Slope - intercept form  

                            [tex]y = \frac{7x}{9} +4[/tex]

Final answer:-

The equation of the straight line in point-slope form

                            [tex]y - 4 = \frac{7}{9} (x-0)[/tex]

The equation of the straight line

                         7x -9y +36 =0