A parabola-shaped hill can be modeled by equation
y=-2(x - 3)2 +6, where x and y are measured in
kilometers.
How wide is the bottom of the hill? Assume the r -axis is
ground level. Round to the nearest tenths.
kilometers

Respuesta :

Answer:3.46 km

Step-by-step explanation:

Given

shape of hill [tex]y=-2(x-3)^2+6[/tex]

at the bottom y=0 i.e.

[tex]0=-2(x-3)^2+6\\(x-3)^2=3\\x-3=\pm\sqrt{3}\\x=3\pm\sqrt{3}[/tex]

width of the bottom

[tex]3+\sqrt{3}-[3-\sqrt{3}]=2\sqrt{3}\ km\ or\ 3.46\ km[/tex]