Respuesta :

Answer:

Please check the explanation.

Step-by-step explanation:

Given the system of equations

2 + 2y = 6

2x - 3y = 26

Let us solve the system of equations

[tex]\begin{bmatrix}2+2y=6\\ 2x-3y=26\end{bmatrix}[/tex]

Rearrange equations

[tex]\begin{bmatrix}-3y+2x=26\\ 2y=4\end{bmatrix}[/tex]

Multiply -3y+2x=26 by 2:    -6y+4x=52

Multiply 2y = 4 by 3:  6y = 12

[tex]\begin{bmatrix}-6y+4x=52\\ 6y=12\end{bmatrix}[/tex]

adding the equations

[tex]6y=12[/tex]

[tex]+[/tex]

[tex]\underline{-6y+4x=52}[/tex]

[tex]4x=64[/tex]

Solve 4x = 64 for x

[tex]4x = 64[/tex]

divide both sides by 4

[tex]\frac{4x}{4}=\frac{64}{4}[/tex]

Simplify

[tex]x = 16[/tex]

For -6y+4x = 52 plug in x = 16

[tex]-6y+4\cdot \:16=52[/tex]

Multiply the numbers: 4 · 16 = 64

[tex]-6y+64=52[/tex]

Subtract 64 from both sides

[tex]-6y+64-64=52-64[/tex]

Simplify

[tex]-6y=-12[/tex]

Divide both sides by -6

[tex]\frac{-6y}{-6}=\frac{-12}{-6}[/tex]

[tex]y=2[/tex]

Therefore, the solution to the system of equations be:

[tex]y=2,\:x=16[/tex]

Thus,

(x, y) = (16, 2)

Please note that it seems your answer choices have not included the correct option.

Answer:

(10 -2)

Step-by-step explanation:

first you have to substitute the value of x, solve that, substitute the value of y, solve, and that’s about it. :)