Respuesta :

Answer:

see explanation

Step-by-step explanation:

Using the chain rule along with standard derivatives

Given

y = f(g(x)) , then

[tex]\frac{dy}{dx}[/tex] = f'(g(x)) × g'(x)

[tex]\frac{d}{dx}[/tex] (sinx) = cosx , [tex]\frac{d}{dx}[/tex] (cosx) = - sinx

(a)

y = sin x²

[tex]\frac{dy}{dx}[/tex] = cos x² × [tex]\frac{d}{dx}[/tex] (x² )

   = cos x² × 2x

   = 2xcosx²

(b)

y = cos4x³

[tex]\frac{dy}{dx}[/tex] = - sin4x³ × [tex]\frac{d}{dx}[/tex] (4x³ )

   = - sin4x³ × 12x²

   = - 12x²sin4x³