Respuesta :
Answer:
cos ([tex]\frac{7\pi}{8}[/tex]) = [tex]-\frac{\sqrt{2+\sqrt{2}}}{2}[/tex]
Decimal value: −0.9238795325...
Step-by-step explanation:
Write,
cos [tex]\frac{7\pi}{8}[/tex] = cos [tex](\pi-\frac{\pi}{8})[/tex] = −cos [tex]\frac{\pi }{8}[/tex]
Now using half angle formula, cos(x) = 2 cos²([tex]\frac{\pi }{2}[/tex]) − 1, we can write cos [tex]\frac{\pi }{4}[/tex] = 2
cos²([tex]\frac{\pi }{8}[/tex]) − 1
This means [tex]\frac{1}{\sqrt{2}}[/tex] + 1 = 2 cos²([tex]\frac{\pi }{8}[/tex])
2 cos²([tex]\frac{\pi }{8}[/tex]) = [tex]\frac{\sqrt{2}+1}{\sqrt{2}}[/tex]
cos²([tex]\frac{\pi }{8}[/tex]) = [tex]\frac{\sqrt{2}+1}{2\sqrt{2}}[/tex]
cos([tex]\frac{\pi }{8}[/tex]) = [tex]\sqrt{\frac{\sqrt{2}+1}{2\sqrt{2}}}[/tex]
Simplify,
[tex]\sqrt{\frac{\sqrt{2}+1}{2\sqrt{2}}}[/tex] = [tex]\sqrt{\frac{2+\sqrt{2}}{4}[/tex] = [tex]\frac{\sqrt{2+\sqrt{2}}}{2}[/tex]
Hence,
cos ([tex]\frac{7\pi}{8}[/tex]) = −cos ([tex]\frac{\pi }{8}[/tex]) = [tex]-\frac{\sqrt{2+\sqrt{2}}}{2}[/tex]
The exact value of cos(7pi/8) is [tex]\rm -\dfrac{\sqrt{2+\sqrt{2}} }{2 }[/tex] and this can be determined by using the trigonometric properties.
Given :
Expression -- [tex]\rm cos(\dfrac{7\pi}{8})[/tex]
The following steps can be used to determine the exact value of the given expression:
Step 1 - Write the given expression.
[tex]=\rm cos(\dfrac{7\pi}{8})[/tex]
Step 2 - Rewrite the above expression.
[tex]= \rm cos(\dfrac{8\pi - \pi}{8})[/tex]
Step 3 - The above expression is reduced to:
[tex]= \rm -cos(\dfrac{ \pi}{8})[/tex] --- (1)
Step 4 - According to the trigonometric properties:
[tex]\rm cos(x) = 2 cos^2(\frac{x}{2})-1[/tex]
Step 5 - Substitute the value of x = [tex]\pi[/tex]/4 in the above expression.
[tex]\rm cos(\frac{\pi}{4}) = 2 cos^2(\frac{\pi}{8})-1[/tex]
Step 6 - Simplify the above expression.
[tex]\rm cos(\frac{\pi}{8})=\sqrt{\dfrac{\dfrac{1}{\sqrt{2}} +1}{2}}[/tex]
[tex]\rm cos(\frac{\pi}{8})=\sqrt{\dfrac{1+\sqrt{2} }{2\sqrt{2} }[/tex]
[tex]\rm cos(\frac{\pi}{8})=\dfrac{\sqrt{2+\sqrt{2}} }{2 }[/tex]
Step 7 - Substitute the value of cos([tex]\pi[/tex]/8) in the expression (1).
[tex]\rm -cos(\frac{\pi}{8})=-\dfrac{\sqrt{2+\sqrt{2}} }{2 }[/tex]
For more information, refer to the link given below:
https://brainly.com/question/17081568