Answer: 3.190
Step-by-step explanation:
If the population distribution is normal, and population standard deviation is unknown, then
The test statistic is given by :-
[tex]t=\dfrac{\overline{x}-\mu}{\dfrac{s}{\sqrt{n}}}[/tex]
, where [tex]\overline{x}[/tex] = sample mean , [tex]\mu[/tex] = population mean , n= sample size, s= sample standard deviation.
Given: [tex]\mu[/tex] = 2058
[tex]\overline{x}[/tex] = 2044
s= 17
n= 15
Test statistic:
[tex]t= \dfrac{2044-2058}{\dfrac{17}{\sqrt{15}}}\approx3.190[/tex]
Hence, the value of the test statistic is 3.190 [Rounded to the three decimal places.]