contestada

A torsional pendulum is formed by attaching a wire to the center of a meter stick with a mass of 5.00 kg. If the resulting period is 4.00 min, what is the torsion constant for the wire

Respuesta :

Answer:

The torsion constant for the wire is [tex]2.856\times 10^{-4}\,N\cdot m[/tex].

Explanation:

The angular frequency of the torsional pendulum ([tex]\omega[/tex]), measured in radians per second, is defined by the following expression:

[tex]\omega = \sqrt{\frac{\kappa}{I} }[/tex] (1)

Where:

[tex]\kappa[/tex] - Torsional constant, measured in newton-meters.

[tex]I[/tex] - Moment of inertia, measured in kilogram-square meters.

The angular frequency and the moment of inertia are represented by the following formulas:

[tex]\omega = \frac{2\pi}{T}[/tex] (2)

[tex]I = \frac{m\cdot L^{2}}{12}[/tex] (3)

Where:

[tex]T[/tex] - Period, measured in seconds.

[tex]m[/tex] - Mass of the stick, measured in kilograms.

[tex]L[/tex] - Length of the stick, measured in meters.

By (2) and (3), (1) is now expanded:

[tex]\frac{2\pi}{T} = \sqrt{\frac{12\cdot \kappa}{m\cdot L^{2}} }[/tex]

[tex]\frac{2\pi}{T} = \frac{2}{L}\cdot \sqrt{\frac{3\cdot \kappa}{m} }[/tex]

[tex]\frac{\pi\cdot L}{T} = \sqrt{\frac{3\cdot \kappa}{m} }[/tex]

[tex]\frac{\pi^{2}\cdot L^{2}}{T^{2}} = \frac{3\cdot \kappa}{m}[/tex]

[tex]\kappa = \frac{\pi^{2}\cdot m\cdot L^{2}}{3\cdot T^{2}}[/tex]

If we know that [tex]m = 5\,kg[/tex], [tex]L = 1\,m[/tex] and [tex]T = 240\,s[/tex], then the torsion constant for the wire is:

[tex]\kappa = \frac{\pi^{2}\cdot (5\,kg)\cdot (1\,m)^{2}}{3\cdot (240\,s)^{2}}[/tex]

[tex]\kappa = 2.856\times 10^{-4}\,N\cdot m[/tex]

The torsion constant for the wire is [tex]2.856\times 10^{-4}\,N\cdot m[/tex].