A statistician chooses 27 randomly selected dates, and when examining the occupancy records of a particular motel for those dates, finds a variance of 34.34 and a standard deviation of 5.86 rooms rented. If the number of rooms rented is normally distributed, find the 95% confidence interval for the population standard deviation of the number of rooms rented. Interpret your interval in context.

Respuesta :

fichoh

Answer:

Confidence interval variance [21.297 ; 64.493]

Confidence interval standard deviation;

4.615, 8.031

Step-by-step explanation:

Given :

Variance, s² = 34.34

Standard deviation, s = 5.86

Sample size, n = 27

Degree of freedom, df = 27 - 1 = 26

Using the relation for the confidence interval :

[s²(n - 1) / X²α/2, n-1] ; [s²(n - 1) / X²1-α/2, n-1]

From the chi distribition table :

X²α/2, n-1 = 41.923 ; X²1-α/2, n-1 = 13.844

Hence,

[34.34*26 / 41.923] ; [34.34*26 / 13.844]

[21.297 ; 64.493]

The 95% confidence interval for the population variance is :

21.297 < σ² < 64.493

Standard deviation is the square root of variance, hence,

The 95% confidence interval for the population standard deviation is :

4.615 < σ < 8.031

The population variance of 95% confidence interval is [tex]4.615<\sigma<8.031[/tex] and this can be determined by using the given data.

Given :

  • Variance = 34.34
  • Standard Deviation = 5.86
  • Sample Size = 27
  • 95% confidence interval

First, determine the degree of freedom.

[tex]df = 27-1=26[/tex]

The determine the confidence interval using the below formula:

[tex]\left(\dfrac{s^2(n-1)}{X^2_{\alpha/2,(n-1) }}\right);\left(\dfrac{s^2(n-1)}{X^2_{(1-\alpha)/2,(n-1) }}\right)[/tex]

Now, using the chi distribution the above expression becomes:

[tex]\left(\dfrac{34.34\times 26}{41.923 }}\right);\left(\dfrac{34.34\times 26}{13.844 }}\right)[/tex]

Simplify the above expression.

(21.297 ) ; (64.493)

So, the population variance of 95% confidence interval is:

[tex]\begin{aligned}\\21.297&<\sigma^2<64.493\\4.615&<\sigma<8.031\\\end{alingned}[/tex]

For more information, refer to the link given below:

https://brainly.com/question/7635845