Consider two points in an electric field. The potential at point 1, V1, is 24V. The potential at point 2, V2, is 154V. A proton is moved from point 1 to point 2.
(a) Write an equation for the change of electric potential energy AU of the proton, in terms of the symbols given and the charge of the proton e.
(b) Find the numerical value of the change of the electric potential energy in electron volts (eV).
(c) Express v2, the speed of the electron at point 2, in terms of AU, and the mass of the electron me.
(d) Find the numerical value of v2 in m/s

Respuesta :

Answer:

[tex]\triangle U=-e (V_2-V_1)[/tex]

[tex]\triangle U=130eV[/tex]

[tex]V_2=\sqrt{ \frac{2}{me}(\frac{1}{2}meV_1^2+e(V_2-V_1)}[/tex]

Explanation:

From the question we are told that

The potential at point 1, [tex]V_1 = 24V[/tex]

The potential at point 2, [tex]V_2 = 154V[/tex]

a)Generally work done by proton is given as

 [tex]w=-\triangle U[/tex]

 [tex]e\triangle V=-\triangle U[/tex]

 [tex]\triangle U=-e (V_2-V_1)[/tex]  

Generally the Equation for the change of electric potential energy AU of the proton, in terms of the symbols given and the charge of the proton e is mathematically given as

 [tex]\triangle U=-e (V_2-V_1)[/tex]

b)Generally the electric potential energy in electron volts (eV). is mathematically given as

 [tex]\triangle U=-e (154-24)V[/tex]

 [tex]|\triangle U| =|-e (130)V|[/tex]

 [tex]\triangle U=130eV[/tex]

c) Generally according to the law of conservation of energy

[tex](K.E+P.E)_1=(K.E+P.E)_2[/tex]

[tex]\frac{1}{2}meV_1^2+eV_1 =\frac{1}{2}mev_2^2+eV_2[/tex]

[tex]V_2^2=\frac{2}{me}(\frac{1}{2}meV_1^2+e(V_2-V_1)[/tex]

[tex]V_2=\sqrt{ \frac{2}{me}(\frac{1}{2}meV_1^2+e(V_2-V_1)}[/tex]