Each of 16 students measured the circumference of a tennis ball by four different methods, which were: A: Estimate the circumference by eye B: Measure the diameter with a ruler, then compute the circumference C: Measure the circumference with ruler and string D: Measure the circumference by rolling the ball along a ruler

Respuesta :

Answer:

Following are the solution to the given equation:

Step-by-step explanation:

Please find the complete question in the attachment file.

In point a:

[tex]\to \mu=\frac{\sum xi}{n}[/tex]

       [tex]=22.8[/tex]

[tex]\to \sigma=\sqrt{\frac{\sum (xi-\mu)^2}{n-1}}[/tex]

       [tex]=\sqrt{\frac{119.18}{16-1}}\\\\ =\sqrt{\frac{119.18}{15}}\\\\ = \sqrt{7.94533333}\\\\=2.8187[/tex]

In point b:

[tex]\to \mu=\frac{\sum xi}{n}[/tex]

       [tex]=20.6875[/tex]  

[tex]\to \sigma=\sqrt{\frac{\sum (xi-\mu)^2}{n-1}}[/tex]

       [tex]=\sqrt{\frac{26.3375}{16-1}}\\\\=\sqrt{\frac{26.3375}{15}}\\\\ =\sqrt{1.75583333}\\\\ =1.3251[/tex]

In point c:

 [tex]\to \mu=\frac{\sum xi}{n}[/tex]

         [tex]=21[/tex]  

[tex]\to \sigma=\sqrt{\frac{\sum (xi-\mu)^2}{n-1}}[/tex]

       [tex]=\sqrt{\frac{2.62}{16-1}}\\\\ =\sqrt{\frac{2.62}{15}} \\\\= \sqrt{0.174666667}\\\\=0.4179[/tex]

In point d:

[tex]\to \mu=\frac{\sum xi}{n}[/tex]

       [tex]=20.8375[/tex]  

[tex]\to \sigma=\sqrt{\frac{\sum (xi-\mu)^2}{n-1}}[/tex]

       [tex]=\sqrt{\frac{8.2975}{16-1}}\\\\ =\sqrt{\frac{8.2975}{15}} \\\\ =\sqrt{0.553166667} \\\\ =0.7438[/tex]

Ver imagen codiepienagoya