Respuesta :
Answer:
Following are the solution to the given equation:
Step-by-step explanation:
Please find the complete question in the attachment file.
In point a:
[tex]\to \mu=\frac{\sum xi}{n}[/tex]
[tex]=22.8[/tex]
[tex]\to \sigma=\sqrt{\frac{\sum (xi-\mu)^2}{n-1}}[/tex]
[tex]=\sqrt{\frac{119.18}{16-1}}\\\\ =\sqrt{\frac{119.18}{15}}\\\\ = \sqrt{7.94533333}\\\\=2.8187[/tex]
In point b:
[tex]\to \mu=\frac{\sum xi}{n}[/tex]
[tex]=20.6875[/tex]
[tex]\to \sigma=\sqrt{\frac{\sum (xi-\mu)^2}{n-1}}[/tex]
[tex]=\sqrt{\frac{26.3375}{16-1}}\\\\=\sqrt{\frac{26.3375}{15}}\\\\ =\sqrt{1.75583333}\\\\ =1.3251[/tex]
In point c:
[tex]\to \mu=\frac{\sum xi}{n}[/tex]
[tex]=21[/tex]
[tex]\to \sigma=\sqrt{\frac{\sum (xi-\mu)^2}{n-1}}[/tex]
[tex]=\sqrt{\frac{2.62}{16-1}}\\\\ =\sqrt{\frac{2.62}{15}} \\\\= \sqrt{0.174666667}\\\\=0.4179[/tex]
In point d:
[tex]\to \mu=\frac{\sum xi}{n}[/tex]
[tex]=20.8375[/tex]
[tex]\to \sigma=\sqrt{\frac{\sum (xi-\mu)^2}{n-1}}[/tex]
[tex]=\sqrt{\frac{8.2975}{16-1}}\\\\ =\sqrt{\frac{8.2975}{15}} \\\\ =\sqrt{0.553166667} \\\\ =0.7438[/tex]
