Respuesta :
The question is incomplete. Here is the complete question.
Polygon LMNPQ is shown on the coordinate grid. What is the perimeter of polygon LMNPQ?
A. [tex]2+12\sqrt{2}[/tex] units
B. [tex]7+2\sqrt{2}[/tex] units
C. [tex]10+4\sqrt{2}[/tex] units
D. [tex]12+2\sqrt{2}[/tex] units
E. [tex]12+4\sqrt{2}[/tex] units
Answer: E. [tex]12+4\sqrt{2}[/tex] units
Step-by-step explanation: Perimeter of a figure is the sum of all of its sides.
The polygon is drawn on a plane. The distance between a pair of points will give that side its measure.
Distance of two points is calculated as
[tex]d=\sqrt{(x_{2}-x_{1})^{2}+(y_{2}-y_{1})^{2}}[/tex]
Segment MN:
Coordinates: M (2,4) and N (5,8)
[tex]d=\sqrt{(5-2)^{2}+(8-4)^{2}}[/tex]
d = 5
Segment ML:
Coordinates: M (2,4) and L (4,2)
[tex]d=\sqrt{(2-4)^{2}+(4-2)^{2}}[/tex]
[tex]d=2\sqrt{2}[/tex]
Segment NP:
Coordinates: N (5,8) and P (8,4)
[tex]d=\sqrt{(5-8)^{2}+(8-4)^{2}}[/tex]
d = 5
Segment PQ:
Coordinates: P (8,4) and Q (6,2)
[tex]d=\sqrt{(8-6)^{2}+(4-2)^{2}}[/tex]
[tex]d=2\sqrt{2}[/tex]
Segment LQ:
Coordinates: L (4,2) and Q (6,2)
[tex]d=\sqrt{(6-4)^{2}+(2-2)^{2}}[/tex]
d = 2
Calculating perimeter (P):
P = MN + ML + NP + PQ + LQ
P = [tex]5+2\sqrt{2}+5+2\sqrt{2}+2[/tex]
P = [tex]12+4\sqrt{2}[/tex]
Perimeter of polygon LMNPQ is [tex]12+4\sqrt{2}[/tex] units
