Respuesta :

The question is incomplete. Here is the complete question.

Polygon LMNPQ is shown on the coordinate grid. What is the perimeter of polygon LMNPQ?

A. [tex]2+12\sqrt{2}[/tex] units

B. [tex]7+2\sqrt{2}[/tex] units

C. [tex]10+4\sqrt{2}[/tex] units

D. [tex]12+2\sqrt{2}[/tex] units

E. [tex]12+4\sqrt{2}[/tex] units

Answer: E. [tex]12+4\sqrt{2}[/tex] units

Step-by-step explanation: Perimeter of a figure is the sum of all of its sides.

The polygon is drawn on a plane. The distance between a pair of points will give that side its measure.

Distance of two points is calculated as

[tex]d=\sqrt{(x_{2}-x_{1})^{2}+(y_{2}-y_{1})^{2}}[/tex]

Segment MN:

Coordinates: M (2,4) and N (5,8)

[tex]d=\sqrt{(5-2)^{2}+(8-4)^{2}}[/tex]

d = 5

Segment ML:

Coordinates: M (2,4) and L (4,2)

[tex]d=\sqrt{(2-4)^{2}+(4-2)^{2}}[/tex]

[tex]d=2\sqrt{2}[/tex]

Segment NP:

Coordinates: N (5,8) and P (8,4)

[tex]d=\sqrt{(5-8)^{2}+(8-4)^{2}}[/tex]

d = 5

Segment PQ:

Coordinates: P (8,4) and Q (6,2)

[tex]d=\sqrt{(8-6)^{2}+(4-2)^{2}}[/tex]

[tex]d=2\sqrt{2}[/tex]

Segment LQ:

Coordinates: L (4,2) and Q (6,2)

[tex]d=\sqrt{(6-4)^{2}+(2-2)^{2}}[/tex]

d = 2

Calculating perimeter (P):

P = MN + ML + NP + PQ + LQ

P = [tex]5+2\sqrt{2}+5+2\sqrt{2}+2[/tex]

P = [tex]12+4\sqrt{2}[/tex]

Perimeter of polygon LMNPQ is [tex]12+4\sqrt{2}[/tex] units

Ver imagen cristoshiwa