Respuesta :
Answer:
[tex]\displaystyle 0.251327 \ in. \ of \ glass[/tex]
General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
- Left to Right
Algebra I
- Terms/Coefficients
- Expand by FOIL (First Outside Inside Last)
- Factoring
Calculus
Differentiation
Derivative Notation
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Integration
- Integration Property: [tex]\displaystyle \int\limits^a_b {cf(x)} \, dx = c \int\limits^a_b {f(x)} \, dx[/tex]
- Fundamental Theorem of Calculus: [tex]\displaystyle \int\limits^a_b {f(x)} \, dx = F(b) - F(a)[/tex]
- Area between Two Curves
- Volumes of Revolution
- Arc Length Formula: [tex]\displaystyle AL = \int\limits^a_b {\sqrt{1+ [f'(x)]^2}} \, dx[/tex]
- Surface Area Formula: [tex]\displaystyle SA = 2\pi \int\limits^a_b {f(x) \sqrt{1+ [f'(x)]^2}} \, dx[/tex]
Step-by-step explanation:
Step 1: Define
[tex]\displaystyle y = \frac{1}{3}x^{\frac{1}{2}} - x^{\frac{3}{2}}\\Interval: [0, \frac{1}{3}][/tex]
Step 2: Differentiate
- Basic Power Rule: [tex]\displaystyle y' = \frac{1}{2} \cdot \frac{1}{3}x^{\frac{1}{2} - 1} - \frac{3}{2} \cdot x^{\frac{3}{2} - 1}[/tex]
- [Derivative] Simplify: [tex]\displaystyle y' = \frac{1}{6}x^{\frac{-1}{2}} - \frac{3}{2}x^{\frac{1}{2}}[/tex]
- [Derivative] Simplify: [tex]\displaystyle y' = \frac{1}{6\sqrt{x}} - \frac{3\sqrt{x}}{2}}[/tex]
Step 3: Integrate Pt. 1
- Substitute [Surface Area]: [tex]\displaystyle SA = 2\pi \int\limits^{\frac{1}{3}}_0 {(\frac{1}{3}x^{\frac{1}{2}} - x^{\frac{3}{2}}) \sqrt{1+ [\frac{1}{6\sqrt{x}} - \frac{3\sqrt{x}}{2}}]^2}} \, dx[/tex]
- [Integral - √Radical] Expand/Add: [tex]\displaystyle SA = 2\pi \int\limits^{\frac{1}{3}}_0 {(\frac{1}{3}x^{\frac{1}{2}} - x^{\frac{3}{2}}) \sqrt{\frac{81x^2+18x+1}{36x}} \, dx[/tex]
- [Integral - √Radical] Factor: [tex]\displaystyle SA = 2\pi \int\limits^{\frac{1}{3}}_0 {(\frac{1}{3}x^{\frac{1}{2}} - x^{\frac{3}{2}}) \sqrt{\frac{(9x + 1)^2}{36x}} \, dx[/tex]
- [Integral - Simplify]: [tex]\displaystyle SA = 2\pi \int\limits^{\frac{1}{3}}_0 {-\frac{|9x + 1|(3x - 1)}{18}} \, dx[/tex]
- [Integral] Integration Property: [tex]\displaystyle SA = \frac{- \pi}{9} \int\limits^{\frac{1}{3}}_0 {|9x + 1|(3x - 1)} \, dx[/tex]
Step 4: Integrate Pt. 2
- [Integral] Define: [tex]\displaystyle \int {|9x + 1|(3x - 1)} \, dx[/tex]
- [Integral] Assumption of Positive/Correction Factors: [tex]\displaystyle \frac{9x + 1}{|9x + 1|} \int {(9x + 1)(3x - 1)} \, dx[/tex]
- [Integral] Expand - FOIL: [tex]\displaystyle \frac{9x + 1}{|9x + 1|} \int {27x^2 - 6x - 1} \, dx[/tex]
- [Integral] Integrate - Basic Power Rule: [tex]\displaystyle \frac{9x + 1}{|9x + 1|} (9x^3 - 3x^2 - x)[/tex]
- [Expression] Multiply: [tex]\displaystyle \frac{(9x + 1)(9x^3 - 3x^2 - x)}{|9x + 1|}[/tex]
Step 5: Integrate Pt. 3
- [Integral] Substitute/Integral - FTC: [tex]\displaystyle SA = \frac{- \pi}{9} (\frac{(9x + 1)(9x^3 - 3x^2 - x)}{|9x + 1|})|\limits_{0}^{\frac{1}{3}}[/tex]
- [Integrate] Evaluate FTC: [tex]\displaystyle SA = \frac{- \pi}{9} (\frac{-1}{3})[/tex]
- [Expression] Multiply: [tex]\displaystyle SA = \frac{\pi}{27} \ ft^2[/tex]
It is in ft² because it is given that our axis are in ft.
Step 6: Find Amount of Glass
Convert ft² to in² and multiply by 0.015 in (given) to find amount of glass.
- Convert ft² to in²: [tex]\displaystyle \frac{\pi}{27} \ ft^2 \ \div 144 \ in^2/ft^2 = \frac{16 \pi}{3} \ in^2[/tex]
- Multiply: [tex]\displaystyle \frac{16 \pi}{3} \ in^2 \cdot 0.015 \ in = 0.251327 \ in. \ of \ glass[/tex]
And we have our final answer! Hope this helped on your Calc BC journey!