Respuesta :
Answer:
x = -3 and x = - 3/4
Step-by-step explanation:
We can use the quadratic formula to solve for x, considering a = 4 , b = 15, and c = 9:
[tex]x=\frac{-b+/- \sqrt{b^2-4a*c} }{2*a} \\x=\frac{-15+/- \sqrt{(-15)^2-4*4*9} }{2*4}\\x=\frac{-15+/- \sqrt{81} }{8}\\x=\frac{-15+/- 9 }{8}=-\frac{6}{8} \,\,or\,\,-\frac{24}{8} \\x=-\frac{3}{4}\,\,or\,\,x=-3[/tex]
I solved by factoring
I hope you can see my writing
Nvm I’ll just type it out just incase
4x^2+15x+9=0
(4x^2+3x)+(12x+9)=0
X(4x+3)+3(4x+3)=0
(X+3)(4x+3)=0
X+3=0. 4x+3=0
X=-3. 4x=-3
X=-3/4
X=-3, x=-3/4
Answer in solution set is= {-3, -3/4}
I hope you can see my writing
Nvm I’ll just type it out just incase
4x^2+15x+9=0
(4x^2+3x)+(12x+9)=0
X(4x+3)+3(4x+3)=0
(X+3)(4x+3)=0
X+3=0. 4x+3=0
X=-3. 4x=-3
X=-3/4
X=-3, x=-3/4
Answer in solution set is= {-3, -3/4}
