Respuesta :

Answer:

D)     [tex]\frac{1}{6}[/tex]

g¹(1) =  [tex]\frac{1}{6}[/tex]

The inverse of the  function   [tex]g(x) = \frac{x^{\frac{1}{3} }-1 }{2}[/tex]

Step-by-step explanation:

Step(i):-

Given that f(x) = (2x+1)³

 Let  y =  (2x+1)³

       [tex]y^{\frac{1}{3} } =2x+1[/tex]

      [tex]2x = y^{\frac{1}{3} } -1[/tex]

       [tex]x = \frac{y^{\frac{1}{3} }-1 }{2}[/tex]

Step(ii):-

y = f(x) ⇒  x = f⁻¹ (y)

  ⇒ [tex]f^{-1} (y) = \frac{y^{\frac{1}{3} }-1 }{2}[/tex]

     [tex]f^{-1} (x) = \frac{x^{\frac{1}{3} }-1 }{2}[/tex]

The inverse of the given function  

        [tex]g(x) = \frac{x^{\frac{1}{3} }-1 }{2}[/tex]

Differentiating equation (i) with respective to 'x', we get

      [tex]g^{l} (x) = \frac{1}{2} X \frac{1}{3} x^{\frac{1}{3} -1}[/tex]

     [tex]g^{l} (x) = \frac{1}{6} x^{\frac{-2}{3} }[/tex]

Final answer:-

Put x=1

  [tex]g^{l} (1) = \frac{1}{6} 1^{\frac{-2}{3} } = \frac{1}{6}[/tex]