Respuesta :
Answer:
Step-by-step explanation:
tan A=3/4
Sec^2 A= 1+tan^2
A= 1+(3/4)^2=1+9/16=25/16.
Sec A=(25/16)^0.5= +/-5/4
+/-5/4 this is the answer.
Hope this helps
Answer:
Step-by-step explanation:
As given that ,
tan(Ф)=3/4
Now to find sect(Ф)
we know that,
1+[tex]tan^{2}[/tex](Ф)=[tex]sec^{2}[/tex](Ф)
putt values we get ,
[tex]sec^{2}[/tex](Ф)=1+(3/4)^2
[tex]sec^{2}[/tex](Ф)=1+9/16
[tex]sec^{2}[/tex](Ф)=25/16
sec(Ф)= +5/4 and sec(Ф)=-5/4 as quadrant is not mentioned so will take both positive and negative values
hence we get ,
tan(Ф)+sec(Ф)=3/4+5/4 = 8/4 = 2
also for sec(Ф)= -5/4
tan(Ф)+sec(Ф)= 3/4-5/4 = -2/4 = -1/2