Respuesta :

Answer:

Step-by-step explanation:

tan A=3/4

Sec^2 A= 1+tan^2

A= 1+(3/4)^2=1+9/16=25/16.

Sec A=(25/16)^0.5= +/-5/4

+/-5/4 this is the answer.

Hope this helps

Answer:

Step-by-step explanation:

As given that ,

tan(Ф)=3/4

Now to find sect(Ф)

we know that,

1+[tex]tan^{2}[/tex](Ф)=[tex]sec^{2}[/tex](Ф)

putt values we get ,

[tex]sec^{2}[/tex](Ф)=1+(3/4)^2

[tex]sec^{2}[/tex](Ф)=1+9/16

[tex]sec^{2}[/tex](Ф)=25/16    

sec(Ф)=  +5/4    and sec(Ф)=-5/4      as quadrant is not mentioned so will take both positive and negative values

hence we get ,

tan(Ф)+sec(Ф)=3/4+5/4 = 8/4 = 2

also for sec(Ф)= -5/4

tan(Ф)+sec(Ф)= 3/4-5/4 = -2/4 = -1/2