Respuesta :

Answer:

The quadrilateral ABCD is a parallelogram

Step-by-step explanation:

The vertices of the quadrilateral ABCD are;

A(-2 -2), B(5, -2), C(4, -3)and D(-3, -3)

The slope of segment [tex]\overline {AB}[/tex] = (-2 - (-2))/(5 - (-2)) = 0

The length of segment [tex]\overline {AB}[/tex] = 5 - (-2) = 7 (points having the same y-coordinates)

The slope of segment [tex]\overline {AD}[/tex] = (-3 - (-2))/(-3 - (-2)) = 1

The length of segment [tex]\overline {AD}[/tex] = √((-3 - (-2))² + (-3 - (-2))²)  = √2

The slope of segment [tex]\overline {DC}[/tex] = (-3 - (-3))/(-3 - 4) = 0

The length of segment [tex]\overline {DC}[/tex] = 4 - (-3) = 7 (points having the same y-coordinates)

The slope of segment [tex]\overline {BC}[/tex] = (-3 - (-2))/(4 - 5) = 1

The length of segment [tex]\overline {AD}[/tex] = √((4 - 5)² + (-3 - (-2))²)  = √2

Therefore;

The opposite sites of the quadrilateral ABCD are equal; [tex]\overline {AB}[/tex] = [tex]\overline {DC}[/tex], [tex]\overline {AD}[/tex] = [tex]\overline {BC}[/tex]

Given that the slope of a line gives the inclination of the line on a graph, we have;

The opposite sites of the quadrilateral are parallel; [tex]\overline {AB}[/tex] ║ [tex]\overline {DC}[/tex], [tex]\overline {AD}[/tex] ║ [tex]\overline {BC}[/tex]

Therefore the quadrilateral ABCD is a parallelogram because the opposite sides of the quadrilateral ABCD are parallel.

Ver imagen oeerivona