ivyd4
contestada

Find the area of a sector with a central angle of 7.2 radians and a radius of 14 units

Please include steps

Respuesta :

Answer:

[tex]\boxed {\boxed {\sf a= 705.6 \ units^2 }}[/tex]

Step-by-step explanation:

Since we are given the central angle in radians, we should use this formula for the sector area:

[tex]a=\frac{1}{2}r^2 \theta[/tex]

where r is the radius and θ is the angle in radians.

The radius is 14 units and the angle is 7.2 radians.

[tex]r= 14 \ units \\\theta= 7.2[/tex]

Substitute the values into the formula.

[tex]a= \frac{1}{2} (14 \ units)^2 (7.2)[/tex]

Solve the exponent.

  • (14 units)²= 14 units* 14 units =196 units²

[tex]a=\frac{ 1}{2} (196 \ units^2)(7.2)[/tex]

[tex]a=\frac{ 1}{2}(1411.2 \ units^2)[/tex]

Multiply by 1/2 or divide by 2.

[tex]a= 705.6 \ units^2[/tex]

The area of the sector is 705.6 square units.